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Laurent Hébert-Dufresnea,d,e, and Patrick Desrosiersa,b,f
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Figure 1: Network zoo. Examples of networks generated by the process with b = 1 (top row) and b = 0.75
(bottom row), and γ ∈ {−10,−1, 0, 1, 10} (from left to right). The width and color of edges encode this
history; older edges are drawn with thick, dark strokes, while younger edges are drawn using thin, light
strokes. The age of nodes is encoded in their radius.

1 Characterization of the generative model

The generative model of the main text is a generalization of the classical preferential attachment model [1].
The salient features of the generalization are a non-linear attachment kernel kγ [2] and the possibility for new
links to connect pairs of existing nodes [3–7]. See the “Materials and Methods” section of the main text for
a precise definition and Fig. 1 for an example of networks generated by the model with various parameters.

1.1 Degree distribution

Denote by Nk(t) the number of nodes of degree k at time t and define the normalization Zγ(t) =
∑
kNk(t)kγ .

The evolution of {Nk(t)} is approximately governed by the set of differential equations

dN1(t)

dt
= b− N1(t)

Zγ(t)
[1 + (1− b)] , (1a)

dNk(t)

dt
= [1 + (1− b)]

[
Nk−1(t)(k − 1)γ −Nk(t)kγ

]
Zγ(t)

, (1b)

dZγ(t)

dt
=
∑
k

kγ
dNk(t)

dt
. (1c)

The first term of Eq. (1a) accounts for the influx of new nodes of degree 1—attributable to node creation
events—while the second term accounts for the loss of degree 1 nodes—through their acquisition of new
edges. The positive term of Eq. (1b) tracks this growth in the next compartment, while the negative term
represents the loss of nodes—again through their acquisition of edges. The same phenomenology applies for
all k, and the system is therefore complete.

The specific form of the rate of change of the population in compartment k comes from the definition
of the growth mechanism. At least one existing node is selected for growth at each time-step, and a second
existing node can be selected, with probability 1 − b, yielding a base rate of [1 + (1 − b)]. To obtain the
complete expression of the rate for compartment k, [1 + (1− b)] is multiplied by the fraction of events that
affect nodes in this compartment. In a preferential model with kernel kγ , the probability that a growth event
will affect a node of degree k is equal to Nkk

γ/Zγ(t), by definition of the model. This yields the final form
of Eq. (1b).
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Figure 2: Degree distributions of the (γ, b) generalization of PA. Average empirical complementary
cumulative distribution functions (blue symbols) versus the solution of Eqs. (1) (orange solid lines), for
T = 1000, b ∈ {1, 0.75, 0.5} (from top to bottom), and γ ∈ {−1, 0,+1} (from left to right). Each empirical
CCDF is computed on a concatenated degree sequences, obtained from 1 000 instances of the generative
model.

We validate the mean-field equations in Fig. 2. We find that the predictions are accurate in most regimes,
with the exception of γ = 1, b < 1, where we find a significant deviation in the tail of the distribution. This
discrepancy can be traced back to a strong “peloton dynamics” [8–10], i.e., a phenomenon whereby a few
individuals quickly accumulate a large fraction of the available resources. This effect is notably hard to
capture with compartmental mean-field descriptions, and its impact is most felt in the regime γ = 1, b < 1.

1.2 Nearly simple graphs in the large network limit

It is clear that the model generates multigraphs with probability bounded away from 0 for all b < 1. This
is simply due to the fact that new connections between existing nodes are made without regard to the
identity of the nodes—doing otherwise by, e.g., rejecting proposed multi-edges and self-loops, would lead
to identifiability issues for the parameter and the time-scale [11]. The net effect is that during the first
several time-steps, a few densification events will invariably connect nodes to themselves and add redundant
connections. But for most choices of exponent γ, this tendency eventually dies out, and the fraction of edges
that are redundant edges or self-loops goes to zero with T →∞ (see Fig. 3). Thus, while they are technically
multigraphs, the instances of the model are in fact nearly simple in the large network limit. Our general-
ization of PA therefore appears a reasonable model of multigraphs, but also a good approximation of large,
sparse networks, with few or no redundant edges and self-loops. This being said, the fraction of redundant
edges and self-loops diminishes extremely slowly when b is small; one should not use this generalization of
PA as a model if the ratio |V |/|E| ∝ 〈k〉−1 � 1 and the network is small.

Our numerical results show that the transition to the nearly simple regime occurs somewhere between
γ = 1 and γ = 2, at a value γc(b) that potentially depends on b. We do not derive rigorous bounds here,
but note that the analysis of Ref. [2] implies the bound γc(b) ≤ 2 independent from b. Indeed, we know that
the networks condensate at γ = 2 when b = 1 (i.e., only a finite fraction of the nodes have degree greater
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Figure 3: Nearly simple graph transition. Average fraction of the total number of edges that are (a)
multi-edges, and (b) self-loops, as a function of γ, for three different values of b (denoted by colors), and two
different sizes (denoted by marker types). Circles show the fractions for networks of T = 102 edges, while
squares denote networks of T = 104 edges. In the special case of b = 1, it is known that networks start to
“condensate” at γ > 1 (i.e., a finite fraction of the nodes have a macroscopic portion of the edges), and that
they fully collapse at γ = 2 [2]. These two critical values of γ are shown with vertical lines. The curves are
obtained by averaging over 1000 instances at each point for T = 102, and 100 instances at each point for
T = 104.

than 1, and we are in a “winner-takes-all” scenario). It is clear that a condensate state also exists at γ = 2
when b < 1, since changing b only gives more opportunities to the leader to gain new connections (with
itself, forming self-loops). This condensate will contain an extensive number of loops, which means that the
graphs are never nearly simple at γ = 2, independent from b.

1.3 Endogenous correlations

The simple so-called “structural estimators” introduced in the main text relies on the natural correlations
that arise between an edge’s arrival time and its structural role in the network. We illustrate these correlations
numerically, in Figs. 4–5. The results shown in Figs. 4 are in line with the well-known fact that there are
endogenous correlations between the age and the degree of nodes in attachment models (see, e.g., Refs. [1,
2, 12, 13]). Figure 5 shows that the onion layer of an edge is even more strongly correlated with its age than
the degree of its nodes. This partially explains why the layer-based estimation method performs better than
the degree-based method.

We also note that Fig. 4–5 provide a visual explanation of the behavior of the estimators in the extreme
regimes of γ → −∞ and γ → ∞. In the regime γ � 0, the degree-based estimators perform poorly—but
still extract some information—because the correlations start to vanish; notice how there are fewer classes
the more negative γ becomes. This does not happen with OD; in fact the number of classes appears to grow
with increasingly negative values of γ. Thus, the OD-based method can actually better differentiate edges
in the regime γ � 0, using the endogenous correlations alone. In contrast, both estimators fail in the regime
γ � 0 (see main text). Figures 4–5 show that this is due to the fact that almost all correlations vanish at
the condensation threshold γ = 2.
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Figure 4: Correlation between the age of edges and their degree classes. True time of arrival of
an edge t versus its expected degree class, as determined by the degree sorting algorithm presented in the
Materials and Methods section of the main text, for γ =∈ {−3,−2,−1, 0, 1, 2, 3} (from left to right) and
b ∈ {0.50, 0.75, 1.00} (from bottom to top). Ten realizations of the growth and inference process are used to
compute the expected classes.

Figure 5: Correlation between the age of edges and their onion decomposition classes. True time
of arrival of an edge t versus its expected onion decomposition (OD) class, as determined by the OD sorting
algorithm presented in the Materials and Methods section of the main text, for γ =∈ {−3,−2,−1, 0, 1, 2, 3}
(from left to right) and b ∈ {0.50, 0.75, 1.00} (from bottom to top). Ten realizations of the growth and
inference process are used to compute the expected classes.
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2 On uniform posterior distributions

In the main text, we mention that the posterior distribution P (X0:T−1|G, γ, b) is often uniform over large
sets of histories, and that this epitomizes why posterior maximization (MAP) is not a suitable method to
extract information from G. We will now demonstrate that the Krapivsky-Redner-Leyvraz generalization
of preferential attachment [2] is an extreme example of this problem. Namely, we will explicitly show that
when γ ∈ {0, 1}, the posterior distribution of this model is uniform over all histories in Ψ(G) 1. We will then
further argue that there exist large equivalence classes for general γ ∈ R and b ∈ [0, 1].

2.1 Strict uniformity on trees

Recall from the Materials and Methods that in the model where b = 1, the logarithm of the prior distribution
is given by

logP (X0:T−1|γ) =

T−1∑
t=1

log uat(γ, Vt) , ui(γ, Vt) =
kγi (t)∑
i∈Vt k

γ
i (t)

, (2)

where Vt is the node set of Gt prior to any modification of the graph’s structure, and where we have denoted
by at the node selected as the fixation site at time t in X0:T−1. To demonstrate that the distribution is
uniform over the set of all consistent histories, we first define the normalization Z(t; γ) =

∑
i∈Vt k

γ
i (t) and

rewrite

logP (X0:T−1|γ) =

T−1∑
t=1

[
log kγat(t)− logZ(t; γ)

]
. (3)

Now, in the special cases of uniform attachment and of linear preferential attachment, corresponding to
γ = 0 and γ = 1, the normalization Z(t; γ) always takes a special value independent from the actual content
of Vt, namely:

Z(t; γ = 0) =
∑
i∈Vt

k0
i = |Vt| = t+ 1 , (4a)

Z(t; γ = 1) =
∑
i∈Vt

ki = 2t . (4b)

The second identity follows from the fact that exactly one edge is created at each t, and that the sum of
all degrees is always equal to twice the number of edges. These normalizations are independent of X0:T−1,
meaning that they can be dropped as an additive constant. Using γ = 0 and γ = 1 in Eq. (3), we are left
with

logP (X0:T−1|γ) ∝
{

Constant γ = 0,∑T−1
t=1 log kat(t) γ = 1.

(5)

This last equation directly shows that the prior distribution P (X0:T−1|γ) (and therefore the posterior dis-
tribution) is uniform over all histories when γ = 0. Less obvious is the fact that the equation also implies
a uniform posterior distribution in the case γ = 1. To see this, notice that the posterior distribution is
obtained by conditioning on G, and that this restricts the possible histories to those in which a node i of
degree k∗i in G appears k∗i −1 times in the sum

∑T−1
t=1 log kat(t): Once as a node of degree one, once as a node

of degree two, etc. Hence, every history consistent with G is associated with some permutation of a same
sum. Obviously, a permutation does not change the value of a sum; therefore, the posterior distribution is
uniform over all histories consistent with G.

1Lemma 5.3 of Ref. [14] states this fact without proof.
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2.2 Extension to all parameters

Large sets of equally likely histories also arise in the more general attachment model on trees (i.e., when
γ ∈ R with b = 1). The proof that these sets of histories exist is similar in spirit to that of the special
cases above. We first make use of the permutation argument again, noting that it applies to the general sum∑T−1
t=1 log kγat(t), regardless of the value of γ. The problem therefore reduces to the study of the evolution of

the normalization constant. Different from the special cases γ = 0 and γ = 1, the normalization Z(t; γ) does
not grow at the same rate for all histories when γ is arbitrary. But, as we now show, this does not preclude the
existence of equivalence classes with respect to the posterior distribution. For example, consider two histories
identical in all respects until a last node of degree k and its k− 1 remaining neighbors are encountered. The
(k− 1)! histories resulting from the enumeration of this neighborhood will have, by construction, equivalent
sequences of normalization constants Z(1; γ) → Z(2; γ) → . . . Z(T − 1; γ), which imply that these histories
will be associated with the same posterior probability, and that they will form a small equivalence class.
Broader equivalence classes can be identified by noticing that similar permutations arise not only at the end,
but at any point of the histories, and that they interact combinatorially: If there are m such equivalent sets
of edges, of sizes k1, ..., km, then each different point of the posterior is degenerated k1! × ... × km! times.
This argument trivially extends to any b ∈ [0, 1].

2.3 Connection with recursive random trees

The uniformity of the posterior distribution in the case (γ ∈ {0, 1}, b = 1) can also be explained in terms of
random recursive trees and growth processes [15, pp. 14–16]. Specifically, it is well-known that generating
a graph of T edges with (γ = 0, b = 1) is equivalent to drawing a graph uniformly from the set of all
non-plane recursive trees (of T edges), while generating a graph of T edges with (γ = 1, b = 1) is equivalent
to drawing a graph uniformly from all plane recursive trees (of T edges). In other words, P (X0:T−1|γ = 0)
and P (X0:T−1|γ = 1) are uniform over the larger set of all trees. By conditioning on G via the likelihood
P (G|X0:T−1, γ), we are merely renormalizing the distribution to the set Ψ(G) of histories consistent with
G. The uniformity of the posterior distribution follows from the fact that renormalizing preserves uniformity.
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3 Properties of the average posterior time of arrival

In this section, we discuss why
∑
X∈Ψ(G) τX(e)P (X|G, γ) is a good estimator of the time of arrival. In doing

so, we suppress the time subscripts 0 : T − 1 for the sake of notational clarity.

3.1 Minimum mean-square error

In the main text, we mention without proof that the posterior average of τX(e) minimizes the mean-square
error on τX̃(e). The proof is standard and goes as follows.

We first assume that the true arrival time of edge e is determined by its posterior distribution pe(t|G, γ, b).
Without access to the ground truth, this is the best guess we can make since the posterior distribution extracts
all available information from the graph G. The mean-square error (MSE) associated with some estimator
τ̂(e) of the true arrival time τX̃(e) of edge e is then

MSE =

∫
dt(τ̂(e)− t)2pe(t|G, γ, b)

=
∑

X∈Ψ(G)

P (X|G, γ, b)
∫
dt
(
τ̂(e)− t

)2
δ(t− τX(e))

=
∑

X∈Ψ(G)

P (X|G, γ, b)
(
τ̂(e)− τX(e)

)2
,

where we have defined the marginal pe(t|G, γ, b) =
∑
X∈Ψ(G) P (X|G, γ, b)I[τX(e) = t] for edge e, and where

we have written the indicator function as Dirac’s delta.
Even if the timescale of the process is by definition discrete, we resort to continuous estimators of τX̃(e).

This is motivated not only by the simplifications that this decision brings to the mathematical treatment
of the problem, but also by the fact that the generated graphs almost never encode the temporal ordering
perfectly [16]. In short, total ordering won’t do [14], and continuous estimators are needed to encode our
imperfect guesses.

With this in mind, the estimator τ̂MMSE(e) that minimizes the mean-square error must solve ∂

∂τ̂(e)

∑
X∈Ψ(G)

P (X|G, γ, b)
(
τ̂(e)− τX(e)

)2
τ̂(e)=τ̂MMSE(e)

= 0 , (6)

or more explicitly ∑
X∈Ψ(G)

P (X|G, γ, b)
(
τ̂MMSE(e)− τX(e)

)
= 0 . (7)

Using the normalization of the posterior distribution, one easily obtains

τ̂MMSE(e) = 〈τX(e)〉 , (8)

where the average is taken over the posterior distribution for X.

3.2 Maximal correlation

A similar line of reasoning can be used to show that the MMSE estimators maximize the correlation, on
average. By a slight abuse of notation, let us refer to an estimated history constructed with some arbitrary
estimators {τ̂(e)}e∈E(G) as Y , such that τY (e) = τ̂(e). Then, assuming again that X is drawn from the
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posterior distribution, the expected correlation of X and Y is

〈ρ(X,Y )〉 =
∑

X∈Ψ(G)

P (X|G, γ, b)ρ(X,Y )

=
1

σXσY

∑
X∈Ψ(G)

P (X|G, γ, b)
∑

e∈E(G)

(
τX(e)− 〈τ〉

)(
τY (e)− 〈τ〉

)
=

1

σXσY

∑
e∈E(G)

[
〈τX(e)〉 − 〈τ〉

][
τY (e)− 〈τ〉

]
, (9)

where we have defined σ2
X :=

∑
e∈E(G)(τX(e) − 〈τ〉)2, and σY similarly. These standard deviations can

be taken out of the sum because σY is independent of X and the value of σX is constant for all X. The
uniformity of σX comes from the fact that one edge must occupy each ‘time slot’ t = 0, . . . , T−1 by definition,
which implies σ2

X =
∑T−1
t=0 (t − 〈τ〉)2. Again, somewhat stretching the notation, we define as Z the history

constructed with the MMSE estimators, i.e, the history such that τZ(e) = 〈τX(e)〉. This allows us to express
the expected correlation compactly as

〈ρ(X,Y )〉 =
σZ
σX

ρ(Z, Y ) , (10)

where σZ 6= σX in general. In other words, we find that when histories are actually drawn from the posterior
distribution, the expected correlation of the arbitrary estimators {τY (e)} is proportional to the correlation
between these estimators and the MMSE estimators. This implies that the expected overall correlation is
maximized if we choose Y to be the MMSE estimators of the arrival times.

Equation (10) has additional interesting consequences. First, it gives a compact expression of the expected
correlation achieved by the MMSE estimators, since using the MMSE estimators amounts to setting Z = Y ,
yielding

〈ρ(X,Z)〉 =
σZ
σX

. (11)

Second, Eq. (10) confirms the intuition that a good correlation can only be achieved by reliably ordering all
the edges. Indeed, for the MMSE estimators the ratio σZ/σX gives an expected correlation, i.e., an average
of numbers in [−1, 1]. It follows that this ratio can never be greater than 1. This implies σZ ≤ σX , where σ2

X

is a known variance (see above). Now, turning this statement around: The ratio σZ/σX will be maximized
if the (MMSE) estimator achieves a variance σ2

Z equal to the variance σ2
X , obtained by ordering all edges.

Grouping edges in equivalence classes reduces the variance σZ (since grouping two MMSE estimators imply
averaging their ranking); this implies a degradation of the correlation. Thus, the maximum correlation
〈ρ(X,Z)〉 = 1 can only be achieved if the MMSE estimators give a total ordering of the edges.
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4 Properties of the correlation

In this section, we discuss why the Pearson product-moment correlation coefficient is a good measure of the
quality of a collection of estimators {τ(e)} in the context of network archaeology. In doing so, we suppress
the time subscripts 0 : T − 1 for the sake of notational clarity.

4.1 Impossibility of improving on equivalence classes

Suppose that some estimator of τX̃(e) cannot differentiate the edges in a subset S ⊂ E, and that according
to the estimation procedure, these edges would occupy time slots t+ 1 through t+m (where m = |S|). We
now show that trying to arbitrarily break the tie will not improve correlation on average.

We define the history Y as the one where τY (e) = t + (m + 1)/2 if e ∈ S. We also consider the m!
different ways of randomly breaking the ties for S (i.e., the permutations of S). We denote these histories
with {Zπi(X)}. They satisfy the property that τZπi (e) = τY (e) if e 6∈ S, and that the edges of S are assigned
some permutations of the times of arrival t+ 1, . . . , t+m, indexed by i.

If we break the ties randomly, we will achieve, on average, a correlation of

〈ρ(X,Zπ)〉π :=
1

m!

∑
i∈π(S)

ρ(X,Zπi) (12)

with the ground truth X (here noted without tilde to simplify the notation). Then, to prove that randomly
breaking ties cannot improve the correlation, we must show that

〈ρ(X,Zπ)〉π − ρ(X,Y ) := ∆ ≤ 0 . (13)

By symmetry of the permutation group, we can compute the average as

〈ρ(X,Zπ)〉π =
1

2
[ρ(X,Zπ+

) + ρ(X,Zπ−)] , (14)

where Zπ− is the history constructed with some permutation of S and where Zπ+
is the inverse permutation.

Noting that σZπ− = σZπ+ , we write σXσZπ+ ∆ as

1

2

 ∑
e∈E(G)

(
τZπ− (e)− 〈τ〉

)(
τX(e)− 〈τ〉

)
+

∑
e∈E(G)

(
τZπ+ (e)− 〈τ〉

)(
τX(e)− 〈τ〉

)
−
σZπ+
σY

 ∑
e∈E(G)

(
τY (e)− 〈τ〉

)(
τX(e)− 〈τ〉

) . (15)

The standard deviations σX and σZπ+ are non-negative coefficients by definition. It therefore suffices to
show that the above expression is smaller than or equal to 0.

To do so, we first note that σZπ+ > σY
2. This implies that

σXσZπ+ ∆ <
∑
e∈S

[1

2

(
τZπ− (e)− 〈τ〉

)(
τX(e)− 〈τ〉

)
+

1

2

(
τZπ+ (e)− 〈τ〉

)(
τX(e)− 〈τ〉

)
−
(
τY (e)− 〈τ〉

)(
τX(e)− 〈τ〉

)]
(16)

2This can also be shown directly by comparing the variances; one finds that σ2
Zπ+

− σ2
Y =

∑
e∈S [τ2

Zπ+
(e) − τ2

Y (e)] > 0,

since τY (e) = t+ (m− 1)/2 for all e ∈ S and the τZπ+ goes from t+ 1 to t+m.
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where we have used σZπ+/σY > 1 and the fact that the permuted histories are identical to Y for all e 6∈ S.
To obtain an explicit numerical expression for the right-hand side, we index the edges of S by their true time
of arrival (i.e., their arrival time in X). That is to say, we choose

τX(e1) < τX(e2) < . . . < τX(em) . (17)

With an ordering defined, we choose the following permutations to construct Zπ− and Zπ+
:

Zπ+
: t+ 1 t+ 2 . . . t+m

↓ ↓ . . . ↓
e1 e2 . . . em

Zπ− : t+ 1 t+ 2 . . . t+m
↓ ↓ . . . ↓
em em−1 . . . e1

In other words, in Zπ+ , edge e1 is assigned time t + 1, edge e2 is assigned time t + 2, etc. Then, recalling
that τY (e) = t+ (m+ 1)/2 for all e ∈ S, we obtain for the right-hand side of Eq. (16):

m∑
i=1

[1

2

(
t+m− i+ 1− 〈τ〉

)(
τX(ei)− 〈τ〉

)
+

1

2

(
t+ i− 〈τ〉

)(
τX(ei)− 〈τ〉

)
−
(
t+ (m+ 1)/2− 〈τ〉

)(
τX(ei)− 〈τ〉

)]
=

m∑
i=1

[1

2

(
t+m− i+ 1− 〈τ〉

)
+

1

2

(
t+ i− 〈τ〉

)
−
(
t+ (m+ 1)/2− 〈τ〉

)](
τX(ei)− 〈τ〉

)
= 0

This completes the proof that randomly breaking ties will on average yield a worst outcome than merely
guessing τY (e) = t+ (m+ 1)/2 for the edges e ∈ S.

4.2 On the placement of equivalence classes

Consider again a set of tied edges S with prescribed arrival times t+ 1, ..., t+m (if they were not tied). We
have shown in the above section that assigning τY (e) = t + (m + 1)/2 for all e ∈ S is a better choice, on
average, than breaking the ties at random. We now show this choice is in fact the best we can do.

Our overall proof strategy is to assign the time λ + ε to the edges in S, where λ = t + (m + 1)/2 and
where ε is a small perturbation away from this guess. We then compute the average correlation with the
ground-truth as a function of ε. Finally, we show that setting ε 6= 0 might actually decrease the correlation
with the ground-truth, such that ε = 0 is the better choice.

Setting λ+ ε for the edges in S, and assuming that all edges not in S are assigned a unique time, or that
the other equivalence classes have been collapsed on their averages λ̃, the overall average time of arrival of
the edges in history Y is

〈τ(ε)〉 =
1

T

[
t∑
i=0

i+m(λ+ ε) +

T−1∑
i=t+m+1

i

]
=
m

T
(λ+ ε) + C =: 〈τ̃〉+

m

T
ε (18)

where C is a constant and where we define 〈τ̃〉 ast the average time, were ε set to 0. Now, the variance of
the arrival times in Y (ε) is

σ2
Y (ε) =

∑
e∈E

(
τY (e)− 〈τ̃〉 − mε

T

)2

= σ2
Y (0) + 2mε(λ− 〈τ̃〉) +mε2

(
1 +

m

T

)
, (19)
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such that the standard deviation is, to the first order in ε,

σY (ε) = σY (0)

[
1 +

mε(λ− 〈τ̃〉)
σ2
Y (0)

+O(ε2)

]
. (20)

This variance can be substituted in Eq. (10) to compute the expected correlation of the history Y (ε) with
the ground truth X, as a function of ε.

Noting that τY (e) = λ+ ε if e ∈ S, and that the sum of τZ(e)− 〈τ̃〉 over all edges is equal to 0, we find

〈ρ(X,Y )〉 ∝
∑
e∈E(τZ(e)− 〈τ̃〉)(τY (e)− 〈τ̃〉 −mε/T )

σY (ε)σZ

=

[
〈ρ̃〉+ ε

∑
e∈S(τZ(e)− 〈τ̃〉)
σY (0)σZ

] [
1− mε(λ− 〈τ̃〉)

σY (0)2
+O(ε2)

]
= 〈ρ̃〉

{
1 + ε

[
1

〈ρ̃〉

∑
e∈S(τZ(e)− 〈τ̃〉)
σY (0)σZ

− m(λ− 〈τ̃〉)
σY (0)2

]
+O(ε2)

}
(21)

where 〈ρ̃〉 is the averaged correlation achieved when ε = 0, and where Z is the MMSE history.

The question is then: What values should we choose for ε? A priori, the two terms of the coefficient of ε
in Eq. (21) have about the same order of magnitude, because |S| = m, 〈ρ̃〉 = O(1), and because σY (0) and
σZ are variances with exactly the same number of terms. Hence, the coefficient may be positive or negative,
and the only way to know is to compute the (optimal) MMSE history. But if we knew Z, then we would not
need to set ε in the first place. This leaves us in a situation where we have to guess ε without calculations.
Hence, ε = 0 is as good as any guess. We favor it because it preserves the mean arrival time.
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5 Characterization of the sampling method

5.1 Proposal distributions

Sequential Monte Carlo methods make use of a proposal distributionQ(X0:T−1, θ|G) to approximate P (X0:T−1|G, γ, b)
(where θ is a set of parameters, potentially functions of γ and b). We here discuss several proposal distribu-
tions in depth.

5.1.1 Snowball proposal distribution

The snowball proposal distribution Qsb(X0:t|G) is introduced in the main text, see the Materials and Methods
for details. In a nutshell, a snowball sample is a random recursive enumeration of a graph, rooted on a
randomly selected seed [17–19]. The main advantage of this method is that it admits a simple and efficient
sampling algorithm. We simply grow a boundary Ω, i.e., a set of potential edges that could be enumerated
next, and store it in a variable length array that supports random access. Drawing uniformly from this
boundary can be done in O(1) time. The principal bottleneck is updating the boundary, which takes
O(kmax) time if we use the graph structure and tags to determine which edges should be added to Ω (this
is faster than querying the boundary).

5.1.2 Truncated posterior proposal distribution

Another possible choice of proposal distribution—not discussed in the main text—is what we call the “trun-
cated posterior distribution.” It has been recently applied to a temporal graph sampling problem close to
the one analyzed in the main text [20] and is frequently used in the particle filtering literature [21] due
to its mathematical simplicity. The idea is to choose a proposal that simplifies the form of the weights
ω(X0:t|G, γ, b) = P (X0:t|γ, b)/Q(X0:t|G, γ, b), specifically

Qtp(X0:t|G, γ, b) ∝ P (X0:t|γ, b)I[X0:t ∈ Ψ(Gt)] , (22)

which transform the weight into a simple normalization over all the possible continuation of X0:t−1 consistent
with GT . The sample weights can therefore be incremented by:∑

e∈Ω(Xt)

P (Xt|Xt−1, γ, b) (23)

at every step, with Ω(Xt) the boundary at time t. Unfortunately, a naive implementation of the trun-
cated posterior proposal distribution will return samples in O(|E| × |E|) time, since the possible transitions
Xt−1 → Xt have heterogeneous (and changing) weights that must be updated at every step.

Thankfully, an efficient O(|E| × kmax × log log k
2|γ|
max) implementation can be obtained by using a slightly

complex underlying data structure. We again grow a boundary Ω. Differently from the snowball proposal
distribution, we store this boundary in two separate maps, one for the tendrils T (edges in the boundary
connected to only one node already in Gt) and one for the closures C (connected to two nodes in Gt). We
associate a weight kγi to every edge in T , where i is the node of the tendril already part of the graph G(Xt).
Likewise, we associate a weight kγi k

γ
j to every edge in C, where (i, j) are the two end-nodes of the closure.

These weights are used as the keys of the map, and the content is a list of edges with that weight. Finally,
we keep track of the sum of the weights in both trees as ΣT and ΣC , and also update a overall degree
normalization Z(t; γ) =

∑
i∈Vt k

γ
i . Upon adding a new edge to the history, we cycle through its neighboring

edges, and (1) add new edges to the boundary, (2) move edges from the tendril set to the closure set if
necessary, (3) update the weight of the affected edges, and (4) update all the running normalization. This
can all be done in at worst O(kmax) time using tags on edges to classify them as in the boundary, already
enumerated or unseen. The bottleneck is the lookup of up to kmax neighbors of the newly enumerated edge.

This complex storage method pays off when it comes time to sample: We can draw an edge from the
truncated posterior distribution in near constant time by using a two–steps algorithm. We first randomly
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choose between the tendrils and closures, with probabilities proportional to the total weight of their elements,
i.e.:

Pr[Next edge is tendril] =
bΣT

bΣT + (1− b)ΣC/Z(t; γ)
, (24)

where Z(t; γ) accounts for the fact that a transition involving a closure (i, j) is proportional to kγi k
γ
j /Z

2

while a transition that involves a tendril (i, k)—where k is a node that was never seen before—is propor-
tional to kγi /Z. Second, after having chosen whether the next edge is a tendril or a closure, we sample from
the selected subset using probabilities proportional to the weights the edges. Since we have separated edges
in weight classes, a composition-rejection algorithm can be used to sample from the relevant subset of the
boundary in O(log logwmax) time [22], where wmax is the maximal weight of the elements in that set (equal

to k
|γ|
max for T , and k

2|γ|
max for C). It is easy to verify that the two-step process above samples from the edges

in the boundary with probability proportional to P (Xt|Xt−1, γ, b).

Note that separating the boundary in two parts is necessary: Updates to the degrees affect the relative
probability of choosing closures and tendrils differently, because the normalizations of the associated transi-
tions differ by a factor of Z. Hence we cannot keep track of these two edges sets in a single binary decision
tree without costly updates.

5.1.3 Snowball distribution with an initial bias

Recall from the main text that the probability of generating a history X0:T−1 with the unbiased snowball
proposal distribution is

Qsb(X0:T−1|G) = P (X0|G)×
T−1∏
t=1

[
|Ω(Xt)|

]−1
, (25)

where Ω(Xt) denotes the boundary at step t of history X, and where P (X0|G) is the distribution used to
select the seed (the initial edge). In the classical snowball proposal distribution, we choose uniformly from
E(GT ) for the sake of simplicity. But the distribution P (X0|G) is in fact an optimization opportunity; it
allows us to start “on the right foot,” with edges that are likely to be the first. Building on the insight of
Sec. 1.3, we use the parametrized distribution

P (X0|G;α) =
(k1(e)× k2(e))α

Z(α)
Z(α) =

∑
e∈E(G)

(k1(e)× k2(e))α (26)

where α ≥ 0 is a parameter and k1(e) and k2(e) the degrees of the nodes attached to e. Large values of α
nudge the algorithm towards histories that begin with edges that are attached to high degree nodes.

5.1.4 Biased snowball proposal distribution: controlled evolution

Both b and γ are constants of the generative process. This implies that unbiased estimators (b̂(t), γ̂(t))
constructed with the first t iterations of the ground truth X̃ ought to settle on (b, γ), for sufficiently large
t. A biased snowball proposal distribution can make use of this property to generate better histories, by
ensuring that some running estimators of b and γ stay close to some constant baseline computed on the
whole network. If the estimators fluctuate a lot throughout a history X, then X is probably not the ground
truth, and it is also unlikely to be even well correlated with the ground truth. Ergo, it can pay to actively
steer the sampler away from such histories.

In practice, running estimators of γ are hard to evaluate, let alone update efficiently. Therefore we use
the estimator pair:

b̂(t) =
|Vt| − 2

|Et| − 1
and v̂(t) =

1

|Vt|

[∑
i∈Vt

ki(t)

]2

+
1

|Vt|2
∑
i∈Vt

k2
i (t) . (27)
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Figure 6: Effect of bias in selecting the seed of snowball samples. Average correlation attained with
the snowball proposal distribution, when using 103 samples to compute MMSE estimators, as a function of
the strength of the bias α used in selecting the seed. The experiments are run on artificial graphs of T = 50
edges generated by the model, with b ∈ {1, 0.75, 0.5} (from bottom to top), and γ ∈ {−1, 0,+1} (from left to
right). The curves are averaged for 10 runs of the sampler, on 200 different instances of the model (i.e., all
averages are computed with 2 000 data points). To isolate the effect of α, we do not perform any resampling
(i.e., we use a SIS algorithm, and not an SMC algorithm). The shaded region contains 50 percent of the
data points (from the 25th percentile to the 75th percentile).

where v̂(t), the variance of the degree sequence, is a proxy for γ̂(t). These estimators are easy to update on
the fly in O(1) operations; one simply needs to keep a running count of |Vt|, |Et|,

∑
i∈Vt k

2
i (t) and t (notice

that
∑
i∈Vt ki(t) = 2t by definition). Now, for target values (v∗, b∗) computed on the final graph (i.e., the

target baseline), and some parameters (β > 0, µ > 0), we give the following weight to an edge:

w(e) ∝ exp
{
− β

[
b̂(t+ 1)− b∗

]2
− µ [v̂(t+ 1)− v∗]2

}
, (28)

where b̂(t + 1) and v̂(t + 1) are the estimators evaluated in the hypothetical history where e is selected at
time t. Sampling is accomplished by, again, growing a boundary Ω and sampling from it with probability
proportional to w(e), i.e.:

Qbsb(X0:T−1|G;β, µ) = P (X0|G;α)×
T−1∏
t=1

w(et)

W (t)
, (29)

where W (t) is the sum of the weights on the boundaries. The unbiased snowball distribution recovered by
setting β = µ = 0, since w(et)/W (t) is then equal to 1/|Ω(Xt)|.

The main drawback of the biased snowball proposal is its computational complexity. The weights must
be recomputed at each step, because they are functions of time-dependent quantities that are functions of
the whole network, leading to a complexity of O(|E| × |E|) per sample.

5.2 Analysis of the proposal distributions

This section regroups two numerical case studies (Figs. 6–7) showcasing the advantage and drawbacks of the
proposal distributions.
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Figure 7: Evolution of the estimators in snowball samples of large graphs. Evolution of the ground
truth (blue lines), of two uncontrolled samples (yellow lines), and of two controlled samples (orange lines),
on artificial graphs of T = 1000 edges generated by the model. We use the kernel exponent (left column)
γ = −1, (central column) γ = 0, and (right column) γ = 1, and the node creation probability equals (top
row) b = 1, (second and fourth row) b = 0.75, and (third and last row) b = 0.50. The first 9 panels show
the evolution of the estimated variance v̂(t) and the last 6 panels show the evolution of the estimated node

creation probability b̂(t). The panels are matched, e.g., the dotted orange line in panels (d) and (j) illustrate
the evolution of the estimators in a single sample, on the same graph. There are only six panels associated
with b̂(t) since its evolution is trivial on trees. The number in the top-right corner of each panel indicates
the correlation of the ground truth and the uncontrolled samples (two topmost numbers), and of the ground
truth and the controlled samples (the two numbers below). We use β = 2000, µ = 0 on loopy graphs (b < 1)
and µ = 1 on trees, except when γ = 1, in which case we opt for no control at all, by fear of reaching the
steady state of v̂(t) = v∗ too rapidly.
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5.2.1 Effect of initial bias

In Fig. 6, we investigate the effects of the initial bias parameter α of Sec. 5.1.3 by checking the quality of the
inference results on multiple artificial networks, for various of levels of initial bias. We find that non-zero
values of α systematically enhance the inference. But because the increase in quality is very typically small,
we opted for clarity in the main text and performed all computations with α = 0 (i.e., we used the “simple”
snowball distribution) and more samples. As a rule of thumb, however, α = 5 yields better results across all
parameters.

5.2.2 Effect of controlled evolution

In Fig. 7, we show the evolution of the estimators (b̂, v̂) for both unbiased and biased (“controlled”) samples
generated using the snowball proposal distribution, on artificial network instances. We superimpose the
trajectories associated with the ground truth. We set an initial bias of α = 5 for all controlled trajectories
(see above discussion), and of α = 0 in all uncontrolled trajectories. We choose different values of (β, µ)

based on (b̂(T ), γ̂(T )), see the caption 3.
The figures show that biased samples are much closer to the ground truth than a typical snowball sample.

In the early stage of the enumeration, the snowball proposal distribution branches out on the background
graph [23], generating an almost tree-like sample. Only in the later stages does it consolidates edges and

lowers its node to edge ratio b̂(t). The biased snowball proposal distribution therefore appears far superior
to the simple snowball sample.

Unfortunately, the complexity of the sampling process for this proposal distribution is prohibitive (several
seconds are needed to generate a sample for the network shown), and prevents us from actually generating
enough sample to compute posterior estimates. Hence, given a fixed time budget, we find it ultimately
more practical to generate many poorly correlated (using the snowball or truncated posterior proposal
distribution) than to generate much fewer high-quality samples with a biased snowball proposal distribution.
An interesting direction for future research would be to obtain a variation on the biased snowball proposal
distribution that admits an efficient implementation, perhaps building on the “bookkeeping techniques”
introduced in Sec. 5.1.2.

5.3 Best choice of proposal distribution and resampling level

In this section, we determine which proposal distribution is best suited to network archaeology, by checking
how fast the estimators {τ̂(e)} converge to their optimal values, depending on which distribution is used. In
doing so, we do not investigate the biased snowball proposal distribution because its computational cost is
far too prohibitive to conduct a numerical study.

Our results are shown in Fig. 8, where we analyze the interplay between the sample size, resampling
level, proposal distribution and achieved correlation. Our experiments show that, as one might expect, the
SMC always outperforms the onion decomposition (OD) on average given enough samples. The number of
samples needed to accomplish this is not constant depending on the combination of generating and sampling
parameters. In all cases, however, the number of samples needed represent an astronomically small fraction
of the number of |Ψ(G)| potential histories4.

From the results of Fig. 8, it appears that the snowball proposal distribution (triangles) always does at
least as good as the truncated posterior proposal distribution (circles), once we choose the correct level of
resampling. Furthermore, we find that resampling does not help in the loopy case (b = 0.75) or in the PA

3Here we evaluate γ directly—only once on the full graph—to choose values for bias parameters. This is a relatively easy
minimization problem, see Materials and Methods.

4A loose upper bound on |Ψ(g)| is T !, not accounting for the existence of inconsistent histories. Closer estimates can be
obtained with a small modification to the sequential importance sampling method (see Ref. [24] for a related application of sam-
pling to counting). The method relies on the identity |Ψ(G)| =

∑
X0:T−1∈Ψ(G) Q(X0:T−1|G)/Q(X0:T−1|G) = 〈1/Q(X0:T−1)〉Q.

The idea is to approximate the average as 1
n

∑n
i=1[Q(xi|G)]−1 with xi drawn from the distribution Q(X), here chosen as the

snowball proposal distribution for convenience. In the classical preferential attachment case where b = 1 and γ = 1, for example,
we find |Ψ(G)| = O(1054) when T = 50, a result that is ten orders of magnitude smaller than the loose bound T ! = O(1064).
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Figure 8: Convergence of the sampling methods. Average correlation achieved with various proposal
distributions and resampling levels, on artificial networks of T = 50 edges generated with b ∈ {1, 0.75} (from
top to bottom), and γ ∈ {−1, 0,+1} (from left to right). Results obtained with the truncated posterior
proposal distribution are shown using circles. Results obtained with the snowball proposal distribution are
shown with triangles. The resampling threshold used is shown with colors: systematic corresponds to the
blue makers (ESS < n), adaptive SMC corresponds to the yellow markers (ESS < n/2), and SIS is shown in
orange (ESS < 0). All the data points are obtained by averaging over independent realization of the model
and of the sampling process. Denoting the number of samples used to evaluate the estimators as n, the
number of independent trials used to compute the averages are: n = 102 (3000) n = 103 (1800) n = 104

(1200) n = 105 (120). The performance of the onion decomposition is shown for reference (average denoted
by a dotted black line and 50% of the data is shown with the shaded rectangle). We omit the error bars for
the sake of clarity. To avoid confounding factor, we use no root biased α = 0 in all cases.
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Figure 9: Effective sample size in SIS. Typical example of the evolution of the effective sample size
(ESS, see Eq. (30)), as a function of the number of samples used. To highlight the abrupt change in ESS,
the results are computed for a single instance of the PA model (γ = 1, b = 1), and a single set of samples.

case (γ = 1, b = 1). Based on these experiments, we always use the snowball proposal distribution and
resample only on homogeneous trees b < 1.

Note that these results are somewhat unexpected, in two different ways. First, our analysis suggests that
the problems afflicting SMC (path degeneracy, see Sec. 5.4.2) can outweigh its benefits in the context of
network archaeology. Second, our analysis shows that while the truncated posterior proposal distribution
makes use of more “immediate” knowledge of the model, it ultimately leads to worst results than a proposal
distribution that does not even try to match the posterior P (X0:T−1|G, γ, b).

5.4 Additional results

5.4.1 Evolution of the effective sample size

As highlighted in the main text, SIS often becomes dominated by a few high weight samples, something that
can be quantified with the effective sample size [25]

ESS({xi}|G, γ, b) :=
[
∑n
i=1 ω(xi|G, γ, b)]

2∑n
i=1 ω(xi|G, γ, b)2

, (30)

where ω(xi|G, γ, b) is the unnormalized weight of history i. An ESS close to n indicates that all histories
contribute equally.

In Fig. 9, we show a typical example of the evolution of the ESS as we sequentially add on more samples.
The ESS grows slowly, and dips abruptly whenever a new high weight sample is generated. Importantly,
the rate of increase of the ESS slows down after each dip, because the slowly growing set of high weight
samples become harder and harder to “outcompete.” This implies that obtaining a large effective sample
size is impossible with the SIS; a few histories will invariably dominate the others.

The SMC method attempts to mitigate the problem by resampling the histories whenever the ESS
becomes too low [26] (or even systematically [20]). In Fig. 10, we show a few typical ESS trajectories for a
number of variants of the SMC, now as a function of the time-step t, since SMC calls for a fixed number of
histories evolved in parallel. Our results show that while the ESS is equal to n right after the histories are
resampled (by construction, not shown), the ESS actually decreases quite fast if the histories are left to evolve
without resampling (yellow and orange curves). Hence constant resampling is needed to maintain some form
of homogeneity. We note that the ESS peaks at a similar value regardless of the specific resampling threshold
(n vs. n/2). This suggests that constant resampling is probably not needed, and that SMC and adaptive
SMC actually achieve similar results (an observation that is also supported by the similar convergence results
of Fig. 8, notice how the blue and yellow lines are nearly identical in the limit of large n). We also note that
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Figure 10: Effective sample size in SMC. Curves correspond to a single SMC sampling run with n =
10 000 parallel samples, generated for a single instance of the model b = 1 and (a,b) γ = 1, (c,d) γ = 0. We
use the snowball proposal distribution in (a,c) and the truncated posterior proposal distribution in (b,d). For
SMC (blue markers), the set of histories is resampled at every step. For adaptive SMC (yellow markers), the
histories are resampled whenever ESS < n/2 (dotted horizontal line). Finally, for SIS (orange markers), the
histories are never resampled. Note that the ESS (see Eq. (30)) is calculated before any potential resampling
step is carried out.
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Figure 11: Path degeneracy in SMC. Number of distinct roots in the set of histories H(t), for the
simulations shown in Fig. 10. We use the same layout and color code. The minimum is indicated with a
dotted line.
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it is possible to achieve good results with a small ESS (SIS is on par with the other methods at γ = 1, b = 1,
yet it has a small ESS).

5.4.2 Path degeneracy

The so-called path degeneracy effect [21] potentially explains why we do not necessarily get better results
with SMC or adaptive SMC. Path degeneracy refers to the idea that resampling sometimes erases histories
that could have evolved towards a high weight state, because it is “blind” to what happens down the road.
Hence, SMC effectively trades variances for bias.

To investigate path degeneracy, we plot in Fig. 11 the number of distinct edges acting as the root, as a
function of t. Because the number of samples n is much larger than T , every edge is represented as a root
in the initial set of histories H(t = 0), with high probability. However, as we let time evolve and resample,
the roots associated with low weights ω(X0:t;G, γ, b) are removed from H(t) (unless the number of samples
n is infinite / very large). As a result, the SMC algorithm is assigning an empirical probability of zero to a
large portion of the posterior distribution. This is fine if these histories actually turn out not to carry much
probability mass (in our experiment: on trees), but path degeneracy can also have disastrous effects (in our
experiment: on loopy graphs).

In general we see that adaptive resampling alleviates some of the path degeneracy while maintaining
an ESS after resampling that is similar to systematic resampling. This explains the better performance of
adaptive SMC over pure SMC at low n (see Fig. 8).

5.4.3 Convergence: detailed convergence analysis in the absence of resampling

The “averaged results” of Fig. 8 should not be taken as a proof of the dominance of the sampling method over
the OD on an instance-by-instance basis, even given infinitely many samples. Indeed, it is unclear whether
the sampling method would systematically outperform the OD given a perfect knowledge of the posterior
distribution P (X|G, γ, b). The optimality proof of Sec. 3 only guarantees that the correlation is maximized
on average, over the set of all histories consistent with some graph G. In other words, the proof relies on an
average notion of optimality, rather than one couched, e.g., in the languages of worst-case guarantees. As a
consequence, there could be instances of the model for which the OD works better than the perfect MMSE
estimators (or their numerical approximations). The relevant question, then, is whether these instances are
common or so unlikely that they will never be observed in practice. The latter scenario would lead to a
practical dominance of the MMSE method. The results of Fig. 12 suggest that reality lies somewhere in
between: There are indeed some instances where it is hard—perhaps impossible—to outperform the simple
OD method, but in the majority of the cases, well approximated MMSE estimators triumph.

This could be better settled by running these experiments with even more samples and independent
graphs. The sample size used here is relatively small, due to computational constraints.
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Figure 12: Inference quality on an instance-by-instance basis. Instance-versus-instance comparison
of the results appearing in Fig. 8. Each dot corresponds to a specific network realization. We show the
correlation ρOD achieved by the onion decomposition versus the correlation ρsample achieved by the sampling
method (here without resampling, using the snowball proposal distribution), with 5 × 102 samples (blue)
and 5× 105 samples (orange). The fraction dn of instances for which ρOD > ρsample appears in each figure.
Points in the shaded region denote instances where the sampling outperformed the onion decomposition.
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markers. For every instance G, we compute the average KS–statistic of the empirical degree distribution
P (G) and of n = 1 000 random degree distributions, generated with parameters (γ, b̂(G)) in the range
γ ∈
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γ∗ − 1
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∗ + 1

2

]
. The figure confirms that the average KS–statistic is convex and centered near the

generating parameters (indicated by vertical lines).

6 Details of the parameter estimation procedure

The statistical inference approach introduced in the main text is developed with the explicit assumption that
the parameters of the generative model are either known, or correctly estimated prior to any archaeology
steps. We characterize this estimation step, and show that the parameters are indeed recoverable in large
instances, by way of simple calculations that do not rely on the full posterior distribution of the model.

6.1 Node creation probability

The quantity b determines whether new edges involve two existing nodes (prob. 1 − b) or an existing node
and a new node (prob. b). We therefore term it the “node creation probability.”

Our estimator of b relies on the observation that a graph G can be seen as a signature of |E(G)| − 1 i.i.d.
Bernoulli trials of parameter b. Indeed, each edge beyond the first embodies a test of whether a new node
should be added, and each node beyond the two initial nodes signals a success of the trial. Therefore the
classical theory of estimation applies to the node creation probability. We opt for the simple maximum a
posteriori (MAP) estimator

b̂(G) =
|V (G)| − 2

|E(G)| − 1
, (31)

valid in the large graph limit or when the prior on b̂(G) is uniform. Note that upon generalizing the model
to different seed graphs G0 [27], the asymptotic estimator would instead read:

b̂(G) =
|V (G)| − |V (G0)|
|E(G)| − |E(G0)|

. (32)

6.2 Kernel exponent

The exponent γ of the attachment kernel controls the degree heterogeneity. Our goal is to learn this exponent
network structure alone, without using temporal data.

The degree distribution is technically a sufficient statistic for γ only once we condition on the arrival
times [20, 28], meaning that we should, in full rigor, sample from the history distribution to evaluate γ,
perhaps along the line of [20]. But in practice, we know that the final degree distribution is well determined
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Figure 14: Consistency of the estimator of γ in small networks. (left) Difference between the true
value and estimated value of γ, for networks of T = 1 000 edges generated with parameters γ ∈ [−1, 1] and
b ∈ [0.25, 1.00]. The difference (γ − γ̂) is averaged over 20 different network realizations at each point of
the parameter space. (center) Distribution of the values appearing in the left panel. The error (γ − γ̂)
is close to zero on average, with a small systematic negative bias. However, we note that the estimator is
strongly biased at γ = 1 with b� 1. This effect can be traced back to the poor fit between the model and its
mean-field description, see Sec. 1.1. (right) Average number of evaluations needed to attain convergence in
Brent’s method. Exponents closer to 0 are harder to find. We use n = 1 000 samples each time we evaluate
the average KS–statistic.

by γ for all γ < 2, with many qualitative transitions at special values of γ, see main text and Ref. [2]. As
a result, we can expect a good inference for γ if we simply match the observed empirical distribution with
that of random instance of the models while tuning γ̂.

This suggests the following non-Bayesian heuristic (based on a method introduced in Ref. [29]). Given

some value of γ and the MAP estimator b̂, we quantify the distance between the model and the data using
the average Kolmogorov-Smirnov (KS) statistic of the empirical degree distribution P (G) and of the degree
distributions of random instance of the model {Q(i)(γ)}i=1,...,n. We obtain our estimator γ̂ by minimizing
this function with respect to γ. The average KS-statistic is convex with respect to γ, such that γ̂ can be found
efficiently via bisection or Brent’s method [30] (see Fig. 13). The KS–statistic of a pair of noisy distributions
(P,Q) is given by the supremum of the difference of their cumulative distribution function (CDF), i.e.,

D(P,Q) = supk|fP (k)− fQ(k)| , (33)

where fP (k) is the CDF of P at point k. In all our characterization tests shown in this document, we
use n = 1 000 samples to approximate the true average KS–statistic. When fitting real networks, we use
n = 100 000 samples, since we need not sweep the whole parameter space.

Because the minimization works correctly only when the KS–statistic is smooth with respect to γ, we
need n� 1 samples to properly approximate it. Unfortunately, simulations become prohibitively expensive
in the limit of large networks and large sample sizes. Hence, we opt for a more efficient solution: We
first integrate the mean-field equations of the model (see Eqs. (1)), and then draw n finite samples from the
distributions. This method is equivalent to—but much faster than—n repeated simulations. The consistency
of the estimators is investigated in Fig. 14

6.3 Goodness of fit

The estimation framework provides a natural test of the goodness of fit of γ [29]. The procedure goes as
follows. After we have found γ̂ via the minimization of the average KS–statistic, we keep the corresponding
minimum KS–statistic D∗(G) in memory. We then generate nbs random degree distributions Q(i) from the

model of parameters (γ̂, b̂) and compute the distribution of their KS–statistic, by comparing each of them
against n additional random degree distributions {S(j)}j=1,...,n. This provides a null distribution for D,
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Figure 15: Verification of the validity of the test of the goodness of fit (on artificial network).
To ensure that our test of the goodness of fit works properly, we check whether it lends evidence to the
generative model when it is applied to a graph generated by the model itself. We use an artificial graph
G = (V,E) generated with the parameters (T = 1 000, γ = 0.7, b = 0.9) as our test dataset. We begin by
inferring the parameters back, mimicking a typical situation where the source of G is unknown. For the
particular graph used to produce the figure, the estimated parameters are γ̂ = 0.643, b̂ = 0.893, and they
are associated with an average KS–statistic of D∗ = 0.025. We then turn to the test of the goodness of fit
[29]. We first draw nbs = 1 000 random degree distributions {Q(i)}i=1,...nbs from the model (of parameters

γ̂,b̂), and generate n = 1 000 additional degree distributions {S(j)}j=1,...,n for each i = 1, . . . , nbs. Then, for
each i, we approximate the expected KS–statistic by averaging D(Q(i)|S(j)) over all {S(j)}j=1,...,n. This last
step yields the distribution shown in the figure (with the bin where D∗ falls highlighted). Here, the test of
the goodness of fit shows that the KS–statistic obtained by minimization is at least as extreme as the one
associated with roughly 50% of the samples, providing strong evidence for the model with parameters (γ̂, b̂),
as expected.
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which tells us whether D∗(G) is an extreme value of the average KS–statistic or not. See Fig. 15 and its
caption for an example.

6.4 Sensitivity analysis

For the sake of simplicity, we have treated (γ, b) as nuisance parameters and conditioned the posterior on
their estimates throughout the text. In our analysis of the phase transition, our focus is history recovery
for a sequence of models characterized by different γ, such that this conditioning is fine. “Polluting” the
inference with parameter uncertainty would only muddy our analysis of the true cause for the transition (edge
equivalence). That said, given a real system, one needs a principled way of handling parameter uncertainty.
A complete Bayesian perspective is one way to do so, see e.g. the particle MCMC of Ref. [20].

However, as we show in Fig. 16, a simple sensitivity analysis confirms that the temporal estimates are
robust to parameters misspecification. Because the parameter estimators also appear robust (see Ref. 14), we
can safely conduct inference by conditioning on point estimates. The results of a much costlier full Bayesian
inference process would lead to better error estimates.
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Figure 16: Sensitivity analysis of the parameter estimators. Average correlation with the ground
truth (top 6 panels) and relative error on the true correlation (bottom 6 panels) of the histories estimated by
running the inference with misspecified parameters. These results are produced on trees (b = 1, top rows)
and on loopy graph (b = 0.75, bottom rows), at various level of heterogeneity (γ ∈ {−1, 0 + 1} from left to
right), also see inset text. The bold square shows the reference value (no perturbation) while the rest of the
heatmap shows results for absolute perturbations of magnitude ∆γ ,∆b ∈ {−0.2,−0.1, 0.1, 0.2}. Note that
the error on (γ, b) are typically much smaller than these perturbations, see Fig. 14. In particular we are not
likely to make such a large mistake on b when the network is actually a tree: any b < 1 will produce at least
an edge with probability that grows exponentially in T . Estimates above b̂ = 1 are impossible and therefore
not computed. We use the snowball proposal distribution, and the sampling level most appropriate to each
case (see Fig. 5.3) and n = 100 000 samples. The results are averaged over 35 network instances.
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Figure 17: Goodness of fit of the degree distribution (ebola network). (left) Null distribution
for the average KS–statistic. The value D∗ associated to the best fit is indicated with an orange vertical
line. This distribution is estimated with nbs = 1000 random degree distribution, each compared against
n = 100 additional distributions to compute the average KS-statistic. (right) Degree distribution the
network (orange triangle) compared with the mean-field distribution of the best fit (solid line) and one
bootstrap samples of this distribution (blue circles).

7 Nextstrain Ebola dataset: details

The phylogenetic tree of the Ebola virus is updated in real time and available online from https://

nextstrain.org/ebola. The date at which every strain was sequenced is available as metadata, as well as
the time of emergence of the common ancestors, inferred to within a confidence interval that ranges from a
few days to many weeks [31]. We use the most likely date when the time of emergence is uncertain. When
it was archived for the purpose of the present study, the dataset comprised 1238 unique sequenced strains,
connected by 2196 mutations and 959 inferred common ancestors. We have made the archived copy used in
the main text available online at github.com/jg-you/network_archaeology/data/.

The dataset already comes in the form of a time-ordered tree (we drop the exact date of emergence,
and focus on the ordering). To estimate the parameters, we run the procedure described in the Materials
and Methods as well as in Sec. 6, see Fig. 17. We find that the Ebola phylogenetic tree is best modeled by
(γ̂, b̂) = (−0.71464, 1), associated with an average KS–statistics of D∗ = 0.17005. Using nbs = 1000 random
bootstrap degree distribution, each compared against n = 100 additional distributions, we find that the D∗

is significant, with P [D > D∗] = 0.53 [29] (see Fig. 17). Running the inference methods on the full network,
we obtain correlations of ρdegree = 0.152, ρOD = 0.150, ρMMSE = 0.456 (with only 25 000 SMC samples).
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